41 research outputs found

    A sequential inspection and replacement policy for degradation-based systems

    Get PDF
    © 2017 IEEE. Condition-based maintenance (CBM) has been extensively studied. However, the majority of existing CBM research either consider a periodic inspection schedule or a fixed preventive maintenance threshold. While policies with periodic inspections and/or fixed maintenance threshold are easy to implement in practice, they may incur more-than-necessary inspections and induce more failures. In this paper, we develop a sequential CBM policy for systems subject to stochastic degradation. The aim of the proposed policy is to prevent or delay failures and perform maintenance activities just in time. Unlike conventional preventive maintenance that often fixes the inspection interval and the preventive maintenance threshold, both the next inspection time and the corresponding maintenance threshold in this paper are dynamically determined based on the current state of the system. The proposed sequential predictive maintenance policy is particularly important and applicable for general non-homogeneous degradation processes. The proposed model enables optimal scheduling of inspection and preventive maintenance decisions, in order to minimize the long-run maintenance cost rate including inspection, preventive and corrective maintenance costs. The performance of the proposed predictive maintenance policy is evaluated using a simulation-based optimization approach. Frequency of system failures and total maintenance cost rates are computed and compared with a bench mark maintenance policy, a periodic inspection/replacement policy. Our results show that there can be potential savings from the proposed predictive maintenance policy

    Direct Lineage Conversion of Adult Mouse Liver Cells and B Lymphocytes to Neural Stem Cells

    Get PDF
    SummaryOverexpression of transcription factors has been used to directly reprogram somatic cells into a range of other differentiated cell types, including multipotent neural stem cells (NSCs), that can be used to generate neurons and glia. However, the ability to maintain the NSC state independent of the inducing factors and the identity of the somatic donor cells remain two important unresolved issues in transdifferentiation. Here we used transduction of doxycycline-inducible transcription factors to generate stable tripotent NSCs. The induced NSCs (iNSCs) maintained their characteristics in the absence of exogenous factor expression and were transcriptionally, epigenetically, and functionally similar to primary brain-derived NSCs. Importantly, we also generated tripotent iNSCs from multiple adult cell types, including mature liver and B cells. Our results show that self-maintaining proliferative neural cells can be induced from nonectodermal cells by expressing specific combinations of transcription factors

    Limited Effect of Dietary Saturated Fat on Plasma Saturated Fat in the Context of a Low Carbohydrate Diet

    Get PDF
    We recently showed that a hypocaloric carbohydrate restricted diet (CRD) had two striking effects: (1) a reduction in plasma saturated fatty acids (SFA) despite higher intake than a low fat diet, and (2) a decrease in inflammation despite a significant increase in arachidonic acid (ARA). Here we extend these findings in 8 weight stable men who were fed two 6-week CRD (12%en carbohydrate) varying in quality of fat. One CRD emphasized SFA (CRD-SFA, 86 g/d SFA) and the other, unsaturated fat (CRD-UFA, 47 g SFA/d). All foods were provided to subjects. Both CRD decreased serum triacylglycerol (TAG) and insulin, and increased LDL-C particle size. The CRD-UFA significantly decreased plasma TAG SFA (27.48 ± 2.89 mol%) compared to baseline (31.06 ± 4.26 mol%). Plasma TAG SFA, however, remained unchanged in the CRD-SFA (33.14 ± 3.49 mol%) despite a doubling in SFA intake. Both CRD significantly reduced plasma palmitoleic acid (16:1n-7) indicating decreased de novo lipogenesis. CRD-SFA significantly increased plasma phospholipid ARA content, while CRD-UFA significantly increased EPA and DHA. Urine 8-iso PGF2α, a free radical-catalyzed product of ARA, was significantly lower than baseline following CRD-UFA (−32%). There was a significant inverse correlation between changes in urine 8-iso PGF2α and PL ARA on both CRD (r = −0.82 CRD-SFA; r = −0.62 CRD-UFA). These findings are consistent with the concept that dietary saturated fat is efficiently metabolized in the presence of low carbohydrate, and that a CRD results in better preservation of plasma ARA
    corecore